Paper 2, Section II, H
Explain what is meant by a substructure of a -structure , where is a first-order signature (possibly including both predicate symbols and function symbols). Show that if is a substructure of , and is a first-order formula over with free variables, then if is quantifier-free. Show also that if is an existential formula (that is, one of the form where is quantifier-free), and if is a universal formula. Give examples to show that the two latter inclusions can be strict.
Show also that
(a) if is a first-order theory whose axioms are all universal sentences, then any substructure of a -model is a -model;
(b) if is a first-order theory such that every first-order formula is -provably equivalent to a universal formula (that is, for some universal ), and is a sub-T-model of a -model , then for every first-order formula with free variables.