Paper 3, Section II, H

Algebraic Geometry
Part II, 2013

Let CP2C \subset \mathbb{P}^{2} be the plane curve given by the polynomial

X0nX1nX2nX_{0}^{n}-X_{1}^{n}-X_{2}^{n}

over the field of complex numbers, where n3n \geqslant 3.

(i) Show that CC is nonsingular.

(ii) Compute the divisors of the rational functions

x=X1X0,y=X2X0x=\frac{X_{1}}{X_{0}}, \quad y=\frac{X_{2}}{X_{0}}

on CC.

(iii) Consider the morphism ϕ=(X0:X1):CP1\phi=\left(X_{0}: X_{1}\right): C \rightarrow \mathbb{P}^{1}. Compute its ramification points and degree.

(iv) Show that a basis for the space of regular differentials on CC is

{xiyjω0i,j0,i+jn3}\left\{x^{i} y^{j} \omega_{0} \mid i, j \geqslant 0, i+j \leqslant n-3\right\}

where ω0=dx/yn1.\omega_{0}=d x / y^{n-1} .