Paper 4, Section II, H

Algebraic Geometry
Part II, 2013

Let CC be a nonsingular projective curve, and DD a divisor on CC of degree dd.

(i) State the Riemann-Roch theorem for DD, giving a brief explanation of each term. Deduce that if d>2g2d>2 g-2 then (D)=1g+d\ell(D)=1-g+d.

(ii) Show that, for every PCP \in C,

(DP)(D)1\ell(D-P) \geqslant \ell(D)-1

Deduce that (D)1+d\ell(D) \leqslant 1+d. Show also that if (D)>1\ell(D)>1, then (DP)=(D)1\ell(D-P)=\ell(D)-1 for all but finitely many PCP \in C.

(iii) Deduce that for every dg1d \geqslant g-1 there exists a divisor DD of degree dd with (D)=1g+d\ell(D)=1-g+d.