Paper 2, Section I, I

Number Theory
Part II, 2013

Define Euler's totient function ϕ(n)\phi(n), and show that dnϕ(d)=n\sum_{d \mid n} \phi(d)=n. Hence or otherwise prove that for any prime pp the multiplicative group (Z/pZ)×(\mathbb{Z} / p \mathbb{Z})^{\times}is cyclic.