Paper 1, Section II, D
Consider a quantum system with Hamiltonian and energy levels
For any state define the Rayleigh-Ritz quotient and show the following:
(i) the ground state energy is the minimum value of ;
(ii) all energy eigenstates are stationary points of with respect to variations of .
Under what conditions can the value of for a trial wavefunction (depending on some parameter ) be used as an estimate of the energy of the first excited state? Explain your answer.
For a suitably chosen trial wavefunction which is the product of a polynomial and a Gaussian, use the Rayleigh-Ritz quotient to estimate for a particle of mass moving in a potential , where is a constant.
[You may use the integral formulae,
where is a non-negative integer and is a constant. ]