Paper 1, Section II, C

Partial Differential Equations
Part II, 2013

(i) Discuss briefly the concept of well-posedness of a Cauchy problem for a partial differential equation.

Solve the Cauchy problem

2u+x11u=au2,u(x1,0)=ϕ(x1),\partial_{2} u+x_{1} \partial_{1} u=a u^{2}, \quad u\left(x_{1}, 0\right)=\phi\left(x_{1}\right),

where aR,ϕC1(R)a \in \mathbb{R}, \phi \in C^{1}(\mathbb{R}) and i\partial_{i} denotes the partial derivative with respect to xix_{i} for i=1,2i=1,2.

For the case a=0a=0 show that the solution satisfies maxx1Ru(x1,x2)=ϕC0\max _{x_{1} \in \mathbb{R}}\left|u\left(x_{1}, x_{2}\right)\right|=\|\phi\|_{C^{0}}, where the CrC^{r} norm on functions ϕ=ϕ(x1)\phi=\phi\left(x_{1}\right) of one variable is defined by

ϕCr=i=0rmaxxR1iϕ(x1)\|\phi\|_{C^{r}}=\sum_{i=0}^{r} \max _{x \in \mathbb{R}}\left|\partial_{1}^{i} \phi\left(x_{1}\right)\right|

Deduce that the Cauchy problem is then well-posed in the uniform metric (i.e. the metric determined by the C0C^{0} norm).

(ii) State the Cauchy-Kovalevskaya theorem and deduce that the following Cauchy problem for the Laplace equation,

12u+22u=0,u(x1,0)=0,2u(x1,0)=ϕ(x1)\partial_{1}^{2} u+\partial_{2}^{2} u=0, \quad u\left(x_{1}, 0\right)=0, \partial_{2} u\left(x_{1}, 0\right)=\phi\left(x_{1}\right)

has a unique analytic solution in some neighbourhood of x2=0x_{2}=0 for any analytic function ϕ=ϕ(x1)\phi=\phi\left(x_{1}\right). Write down the solution for the case ϕ(x1)=sin(nx1)\phi\left(x_{1}\right)=\sin \left(n x_{1}\right), and hence give a sequence of initial data {ϕn(x1)}n=1\left\{\phi_{n}\left(x_{1}\right)\right\}_{n=1}^{\infty} with the property that

ϕnCr0, as n, for each rN,\left\|\phi_{n}\right\|_{C^{r}} \rightarrow 0, \quad \text { as } n \rightarrow \infty, \text { for each } r \in \mathbb{N},

whereas unu_{n}, the corresponding solution of ()(*), satisfies

maxx1Run(x1,x2)+, as n\max _{x_{1} \in \mathbb{R}}\left|u_{n}\left(x_{1}, x_{2}\right)\right| \rightarrow+\infty, \quad \text { as } n \rightarrow \infty

for any x20x_{2} \neq 0.