Paper 4, Section II, E

Principles of Quantum Mechanics
Part II, 2013

(i) The creation and annihilation operators for a harmonic oscillator of angular frequency ω\omega satisfy the commutation relation [a,a]=1\left[a, a^{\dagger}\right]=1. Write down an expression for the Hamiltonian HH and number operator NN in terms of aa and aa^{\dagger}. Explain how the space of eigenstates n,n=0,1,2,|n\rangle, n=0,1,2, \ldots, of HH is formed, and deduce the eigenenergies for these states. Show that

an=nn1,an=n+1n+1a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle

(ii) The operator KrK_{r} is defined to be

Kr=(a)rarr!K_{r}=\frac{\left(a^{\dagger}\right)^{r} a^{r}}{r !}

for r=0,1,2,r=0,1,2, \ldots Show that KrK_{r} commutes with NN. Show that if rnr \leqslant n, then

Krn=n!(nr)!r!n,K_{r}|n\rangle=\frac{n !}{(n-r) ! r !}|n\rangle,

and Krn=0K_{r}|n\rangle=0 otherwise. By considering the action of KrK_{r} on the state n|n\rangle, deduce that

r=0(1)rKr=00\sum_{r=0}^{\infty}(-1)^{r} K_{r}=|0\rangle\langle 0|