Paper 2, Section I, J

Statistical Modelling
Part II, 2013

Consider a linear model Y=Xβ+ϵY=X \beta+\epsilon, where YY and ϵ\epsilon are (n×1)(n \times 1) with ϵNn(0,σ2I)\epsilon \sim N_{n}\left(0, \sigma^{2} I\right), β\beta is (p×1)(p \times 1), and XX is (n×p)(n \times p) of full rankp<n\operatorname{rank} p<n. Let γ\gamma and δ\delta be sub-vectors of β\beta. What is meant by orthogonality between γ\gamma and δ\delta ?

Now suppose

Yi=β0+β1xi+β2xi2+β3P3(xi)+ϵi(i=1,,n),Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} P_{3}\left(x_{i}\right)+\epsilon_{i} \quad(i=1, \ldots, n),

where ϵ1,,ϵn\epsilon_{1}, \ldots, \epsilon_{n} are independent N(0,σ2)N\left(0, \sigma^{2}\right) random variables, x1,,xnx_{1}, \ldots, x_{n} are real-valued known explanatory variables, and P3(x)P_{3}(x) is a cubic polynomial chosen so that β3\beta_{3} is orthogonal to (β0,β1,β2)T\left(\beta_{0}, \beta_{1}, \beta_{2}\right)^{\mathrm{T}} and β1\beta_{1} is orthogonal to (β0,β2)T\left(\beta_{0}, \beta_{2}\right)^{\mathrm{T}}.

Let β~=(β0,β2,β1,β3)T\widetilde{\beta}=\left(\beta_{0}, \beta_{2}, \beta_{1}, \beta_{3}\right)^{\mathrm{T}}. Describe the matrix X~\widetilde{X}such that Y=X~β~+ϵY=\widetilde{X} \widetilde{\beta}+\epsilon. Show that X~TX~\widetilde{X}^{\mathrm{T}} \widetilde{X}is block diagonal. Assuming further that this matrix is non-singular, show that the least-squares estimators of β1\beta_{1} and β3\beta_{3} are, respectively,

β^1=i=1nxiYii=1nxi2 and β^3=i=1nP3(xi)Yii=1nP3(xi)2\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \quad \text { and } \quad \widehat{\beta}_{3}=\frac{\sum_{i=1}^{n} P_{3}\left(x_{i}\right) Y_{i}}{\sum_{i=1}^{n} P_{3}\left(x_{i}\right)^{2}}