Paper 2, Section I, F

Topics in Analysis
Part II, 2013

(i) Show that for every ϵ>0\epsilon>0 there is a polynomial p:RRp: \mathbb{R} \rightarrow \mathbb{R} such that 1xp(x)ϵ\left|\frac{1}{x}-p(x)\right| \leqslant \epsilon for all xRx \in \mathbb{R} satisfying 12x2\frac{1}{2} \leqslant|x| \leqslant 2.

[You may assume standard results provided they are stated clearly.]

(ii) Show that there is no polynomial p:CCp: \mathbb{C} \rightarrow \mathbb{C} such that 1zp(z)<1\left|\frac{1}{z}-p(z)\right|<1 for all zCz \in \mathbb{C} satisfying 12z2\frac{1}{2} \leqslant|z| \leqslant 2.