Paper 3, Section II, F

Topics in Analysis
Part II, 2013

Suppose that x0,x1,,xn[1,1]x_{0}, x_{1}, \ldots, x_{n} \in[-1,1] are distinct points. Let ff be an infinitely differentiable real-valued function on an open interval containing [1,1][-1,1]. Let pp be the unique polynomial of degree at most nn such that f(xr)=p(xr)f\left(x_{r}\right)=p\left(x_{r}\right) for r=0,1,,nr=0,1, \ldots, n. Show that for each x[1,1]x \in[-1,1] there is some ξ(1,1)\xi \in(-1,1) such that

f(x)p(x)=f(n+1)(ξ)(n+1)!(xx0)(xxn)f(x)-p(x)=\frac{f^{(n+1)}(\xi)}{(n+1) !}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)

Now take xr=cos2r+12n+2πx_{r}=\cos \frac{2 r+1}{2 n+2} \pi. Show that

f(x)p(x)12n(n+1)!supξ[1,1]f(n+1)(ξ)|f(x)-p(x)| \leqslant \frac{1}{2^{n}(n+1) !} \sup _{\xi \in[-1,1]}\left|f^{(n+1)}(\xi)\right|

for all x[1,1]x \in[-1,1]. Deduce that there is a polynomial pp of degree at most nn such that

13+xp(x)14n+1\left|\frac{1}{3+x}-p(x)\right| \leqslant \frac{1}{4^{n+1}}

for all x[1,1]x \in[-1,1].