Paper 4, Section II, B

Asymptotic Methods
Part II, 2013

Show that the equation

d2ydx2+2xdydx+(1x21)y=0\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\left(\frac{1}{x^{2}}-1\right) y=0

has an irregular singular point at infinity. Using the Liouville-Green method, show that one solution has the asymptotic expansion

y(x)1xex(1+12x+)y(x) \sim \frac{1}{x} e^{x}\left(1+\frac{1}{2 x}+\ldots\right)

as xx \rightarrow \infty