Paper 3, Section II, B

Asymptotic Methods
Part II, 2013

Let

I(x)=0πf(t)eixψ(t)dtI(x)=\int_{0}^{\pi} f(t) e^{i x \psi(t)} d t

where f(t)f(t) and ψ(t)\psi(t) are smooth, and ψ(t)0\psi^{\prime}(t) \neq 0 for t>0;t>0 ; also f(0)0f(0) \neq 0, ψ(0)=a\psi(0)=a, ψ(0)=ψ(0)=0\psi^{\prime}(0)=\psi^{\prime \prime}(0)=0 and ψ(0)=6b>0\psi^{\prime \prime \prime}(0)=6 b>0. Show that, as x+x \rightarrow+\infty,

I(x)f(0)ei(xa+π/6)(127bx)1/3Γ(1/3).I(x) \sim f(0) e^{i(x a+\pi / 6)}\left(\frac{1}{27 b x}\right)^{1 / 3} \Gamma(1 / 3) .

Consider the Bessel function

Jn(x)=1π0πcos(ntxsint)dtJ_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n t-x \sin t) d t

Show that, as n+n \rightarrow+\infty,

Jn(n)Γ(1/3)π1(48)1/61n1/3J_{n}(n) \sim \frac{\Gamma(1 / 3)}{\pi} \frac{1}{(48)^{1 / 6}} \frac{1}{n^{1 / 3}}