Paper 2, Section I, B

Classical Dynamics
Part II, 2013

(i) Consider a rigid body with principal moments of inertia I1,I2,I3I_{1}, I_{2}, I_{3}. Derive Euler's equations of torque-free motion,

I1ω˙1=(I2I3)ω2ω3,I2ω˙2=(I3I1)ω3ω1,I3ω˙3=(I1I2)ω1ω2,\begin{aligned} &I_{1} \dot{\omega}_{1}=\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}, \\ &I_{2} \dot{\omega}_{2}=\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}, \\ &I_{3} \dot{\omega}_{3}=\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}, \end{aligned}

with components of the angular velocity ω=(ω1,ω2,ω3)\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) given in the body frame.

(ii) Use Euler's equations to show that the energy EE and the square of the total angular momentum L2\mathbf{L}^{2} of the body are conserved.

(iii) Consider a torque-free motion of a symmetric top with I1=I2=12I3I_{1}=I_{2}=\frac{1}{2} I_{3}. Show that in the body frame the vector of angular velocity ω\boldsymbol{\omega} precesses about the body-fixed e3\mathbf{e}_{3} axis with constant angular frequency equal to ω3\omega_{3}.