Paper 2, Section II, B
(i) The action for a system with a generalized coordinate is given by
(a) State the Principle of Least Action and derive the Euler-Lagrange equation.
(b) Consider an arbitrary function . Show that leads to the same equation of motion.
(ii) A wire frame in a shape of an equilateral triangle with side rotates in a horizontal plane with constant angular frequency about a vertical axis through . A bead of mass is threaded on and moves without friction. The bead is connected to and by two identical light springs of force constant and equilibrium length .
(a) Introducing the displacement of the particle from the mid point of , determine the Lagrangian .
(b) Derive the equation of motion. Identify the integral of the motion.
(c) Describe the motion of the bead. Find the condition for there to be a stable equilibrium and find the frequency of small oscillations about it when it exists.