Paper 4, Section I, D

Cosmology
Part II, 2013

List the relativistic species of bosons and fermions from the standard model of particle physics that are present in the early universe when the temperature falls to 1MeV/kB1 \mathrm{MeV} / \mathrm{k}_{B}.

Which of the particles above will be interacting when the temperature is above 1MeV/kB1 \mathrm{MeV} / k_{B} and between 1MeV/kBT0.51MeV/kB1 \mathrm{MeV} / k_{B} \geq T \geq 0.51 \mathrm{MeV} / k_{B}, respectively?

Explain what happens to the populations of particles present when the temperature falls to 0.51MeV/kB0.51 \mathrm{MeV} / k_{B}.

The entropy density of fermion and boson species with temperature TT is sgsT3s \propto g_{s} T^{3}, where gsg_{s} is the number of relativistic spin degrees of freedom, that is,

gs=bosons gi+78fermions gig_{s}=\sum_{\text {bosons }} g_{i}+\frac{7}{8} \sum_{\text {fermions }} g_{i}

Show that when the temperature of the universe falls below 0.51MeV/kB0.51 \mathrm{MeV} / k_{B} the ratio of the neutrino and photon temperatures will be given by

TνTγ=(411)1/3\frac{T_{\nu}}{T_{\gamma}}=\left(\frac{4}{11}\right)^{1 / 3}