Paper 3, Section II, H

Differential Geometry
Part II, 2013

We say that a parametrization ϕ:USR3\phi: U \rightarrow S \subset \mathbf{R}^{3} of a smooth surface SS is isothermal if the coefficients of the first fundamental form satisfy F=0F=0 and E=G=λ(u,v)2E=G=\lambda(u, v)^{2}, for some smooth non-vanishing function λ\lambda on UU. For an isothermal parametrization, prove that

ϕuu+ϕvv=2λ2HN\phi_{u u}+\phi_{v v}=2 \lambda^{2} H \mathbf{N}

where N\mathbf{N} denotes the unit normal vector and HH the mean curvature, which you may assume is given by the formula

H=g+e2λ2H=\frac{g+e}{2 \lambda^{2}}

where g=Nu,ϕug=-\left\langle\mathbf{N}_{u}, \phi_{u}\right\rangle and e=Nv,ϕve=-\left\langle\mathbf{N}_{v}, \phi_{v}\right\rangle are coefficients in the second fundamental form.

Given a parametrization ϕ(u,v)=(x(u,v),y(u,v),z(u,v))\phi(u, v)=(x(u, v), y(u, v), z(u, v)) of a surface SR3S \subset \mathbf{R}^{3}, we consider the complex valued functions on UU :

θ1=xuixv,θ2=yuiyv,θ3=zuizv\theta_{1}=x_{u}-i x_{v}, \quad \theta_{2}=y_{u}-i y_{v}, \quad \theta_{3}=z_{u}-i z_{v}

Show that ϕ\phi is isothermal if and only if θ12+θ22+θ32=0\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}=0. If ϕ\phi is isothermal, show that SS is a minimal surface if and only if θ1,θ2,θ3\theta_{1}, \theta_{2}, \theta_{3} are holomorphic functions of the complex variable ζ=u+iv\zeta=u+i v

Consider the holomorphic functions on D:=C\R0D:=\mathbf{C} \backslash \mathbf{R}_{\geqslant 0} (with complex coordinate ζ=u+iv\zeta=u+i v on C)\mathbf{C}) given by

θ1:=12(1ζ2),θ2:=i2(1+ζ2),θ3:=ζ1\theta_{1}:=\frac{1}{2}\left(1-\zeta^{-2}\right), \quad \theta_{2}:=-\frac{i}{2}\left(1+\zeta^{-2}\right), \quad \theta_{3}:=-\zeta^{-1}

Find a smooth map ϕ(u,v)=(x(u,v),y(u,v),z(u,v)):DR3\phi(u, v)=(x(u, v), y(u, v), z(u, v)): D \rightarrow \mathbf{R}^{3} for which ϕ(1,0)=0\phi(-1,0)=\mathbf{0} and the θi\theta_{i} defined by (2) satisfy the equations (1). Show furthermore that ϕ\phi extends to a smooth map ϕ~:CR3\tilde{\phi}: \mathbf{C}^{*} \rightarrow \mathbf{R}^{3}. If w=x+iyw=x+i y is the complex coordinate on C\mathbf{C}, show that

ϕ~(exp(iw))=(coshycosx+1,coshysinx,y)\widetilde{\phi}(\exp (i w))=(\cosh y \cos x+1, \cosh y \sin x, y)