Paper 2, Section I, 7C7 \mathrm{C}

Dynamical Systems
Part II, 2013

Let x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) be a two-dimensional dynamical system with a fixed point at x=0\mathbf{x}=\mathbf{0}. Define a Lyapunov function V(x)V(\mathbf{x}) and explain what it means for x=0\mathbf{x}=\mathbf{0} to be Lyapunov stable.

For the system

x˙=x2y+x3y˙=y+x+12y3+x2y\begin{aligned} &\dot{x}=-x-2 y+x^{3} \\ &\dot{y}=-y+x+\frac{1}{2} y^{3}+x^{2} y \end{aligned}

determine the values of CC for which V=x2+Cy2V=x^{2}+C y^{2} is a Lyapunov function in a sufficiently small neighbourhood of the origin.

For the case C=2C=2, find V1V_{1} and V2V_{2} such that V(x)<V1V(\mathbf{x})<V_{1} at t=0t=0 implies that V0V \rightarrow 0 as tt \rightarrow \infty and V(x)>V2V(\mathbf{x})>V_{2} at t=0t=0 implies that VV \rightarrow \infty as tt \rightarrow \infty