Paper 4, Section II, C
Consider the dynamical system
where .
Find the fixed points of the dynamical system. Show that for any fixed value of there exist three values of where a bifurcation occurs. Show that when .
In the remainder of this question set .
(i) Being careful to explain your reasoning, show that the extended centre manifold for the bifurcation at can be written in the form , where and denote the departures from the values of and at the fixed point, and are suitable constants (to be determined) and is quadratic to leading order. Derive a suitable approximate form for , and deduce the nature of the bifurcation and the stability of the different branches of the steady state solution near the bifurcation.
(ii) Repeat the calculations of part (i) for the bifurcation at .
(iii) Sketch the values of the fixed points as functions of , indicating the nature of the bifurcations and where each branch is stable.