Paper 1, Section II, 36B

Electrodynamics
Part II, 2013

(i) Starting from

Fμν=(0E1/cE2/cE3/cE1/c0B3B2E2/cB30B1E3/cB2B10)F^{\mu \nu}=\left(\begin{array}{cccc} 0 & E_{1} / c & E_{2} / c & E_{3} / c \\ -E_{1} / c & 0 & B_{3} & -B_{2} \\ -E_{2} / c & -B_{3} & 0 & B_{1} \\ -E_{3} / c & B_{2} & -B_{1} & 0 \end{array}\right)

and performing a Lorentz transformation with γ=1/1u2/c2\gamma=1 / \sqrt{1-u^{2} / c^{2}}, using

Λνμ=(γγu/c00γu/cγ0000100001)\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc} \gamma & -\gamma u / c & 0 & 0 \\ -\gamma u / c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)

show how E\mathbf{E} and B\mathbf{B} transform under a Lorentz transformation.

(ii) By taking the limit cc \rightarrow \infty, obtain the behaviour of E\mathbf{E} and B\mathbf{B} under a Galilei transfomation and verify the invariance under Galilei transformations of the nonrelativistic equation

mdvdt=q(E+v×B)m \frac{d \mathbf{v}}{d t}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})

(iii) Show that Maxwell's equations admit solutions of the form

E=E0f(tnx/c),B=B0f(tnx/c)\mathbf{E}=\mathbf{E}_{0} f(t-\mathbf{n} \cdot \mathbf{x} / c), \quad \mathbf{B}=\mathbf{B}_{0} f(t-\mathbf{n} \cdot \mathbf{x} / c)

where ff is an arbitrary function, n\mathbf{n} is a unit vector, and the constant vectors E0\mathbf{E}_{0} and B0\mathbf{B}_{0} are subject to restrictions which should be stated.

(iv) Perform a Galilei transformation of a solution ()(\star), with n=(1,0,0)\mathbf{n}=(1,0,0). Show that, by a particular choice of uu, the solution may brought to the form

E~=E~0g(x~),B~=B~0g(x~),\tilde{\mathbf{E}}=\tilde{\mathbf{E}}_{0} g(\tilde{x}), \quad \tilde{\mathbf{B}}=\tilde{\mathbf{B}}_{0} g(\tilde{x}),

where gg is an arbitrary function and x~\tilde{x} is a spatial coordinate in the rest frame. By showing that (t)(t) is not a solution of Maxwell's equations in the boosted frame, conclude that Maxwell's equations are not invariant under Galilei transformations.