Paper 4, Section I, E

Further Complex Methods
Part II, 2013

Let the function f(z)f(z) be analytic in the upper half-plane and such that f(z)0|f(z)| \rightarrow 0 as z|z| \rightarrow \infty. Show that

Pf(x)xdx=iπf(0),\mathcal{P} \int_{-\infty}^{\infty} \frac{f(x)}{x} d x=i \pi f(0),

where P\mathcal{P} denotes the Cauchy principal value.

Use the Cauchy integral theorem to show that

Pu(x,0)xtdx=πv(t,0),Pv(x,0)xtdx=πu(t,0),\mathcal{P} \int_{-\infty}^{\infty} \frac{u(x, 0)}{x-t} d x=-\pi v(t, 0), \quad \mathcal{P} \int_{-\infty}^{\infty} \frac{v(x, 0)}{x-t} d x=\pi u(t, 0),

where u(x,y)u(x, y) and v(x,y)v(x, y) are the real and imaginary parts of f(z)f(z).