Paper 4, Section II, D

General Relativity
Part II, 2013

Consider the metric describing the interior of a star,

ds2=e2α(r)dt2+e2β(r)dr2+r2(dθ2+sin2θdϕ2)d s^{2}=-e^{2 \alpha(r)} d t^{2}+e^{2 \beta(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)

defined for 0rr00 \leqslant r \leqslant r_{0} by

eα(r)=32eβ012eβ(r),e^{\alpha(r)}=\frac{3}{2} e^{-\beta_{0}}-\frac{1}{2} e^{-\beta(r)},

with

e2β(r)=1Ar2e^{-2 \beta(r)}=1-A r^{2}

Here A=2M/r03A=2 M / r_{0}^{3}, where MM is the mass of the star, β0=β(r0)\beta_{0}=\beta\left(r_{0}\right), and we have taken units in which we have set G=c=1G=c=1.

(i) The star is made of a perfect fluid with energy-momentum tensor

Tab=(p+ρ)uaub+pgabT_{a b}=(p+\rho) u_{a} u_{b}+p g_{a b}

Here uau^{a} is the 4-velocity of the fluid which is at rest, the density ρ\rho is constant throughout the star (0rr0)\left(0 \leqslant r \leqslant r_{0}\right) and the pressure p=p(r)p=p(r) depends only on the radial coordinate. Write down the Einstein field equations and show that they may be written as

Rab=8π(p+ρ)uaub+4π(ρp)gabR_{a b}=8 \pi(p+\rho) u_{a} u_{b}+4 \pi(\rho-p) g_{a b}

(ii) Using the formulae given below, or otherwise, show that for 0rr00 \leqslant r \leqslant r_{0}, one has

4π(ρ+p)=(α+β)re2β(r)4π(ρp)=(βαr1r2)e2β(r)+1r2\begin{aligned} &4 \pi(\rho+p)=\frac{\left(\alpha^{\prime}+\beta^{\prime}\right)}{r} e^{-2 \beta(r)} \\ &4 \pi(\rho-p)=\left(\frac{\beta^{\prime}-\alpha^{\prime}}{r}-\frac{1}{r^{2}}\right) e^{-2 \beta(r)}+\frac{1}{r^{2}} \end{aligned}

where primes denote differentiation with respect to rr. Hence show that

ρ=3A8π,p(r)=3A8π(eβ(r)eβ03eβ0eβ(r))\rho=\frac{3 A}{8 \pi} \quad, \quad p(r)=\frac{3 A}{8 \pi}\left(\frac{e^{-\beta(r)}-e^{-\beta_{0}}}{3 e^{-\beta_{0}}-e^{-\beta(r)}}\right)

[The non-zero components of the Ricci tensor are

R00=e2α2β(ααβ+α2+2αr)R11=α+αβα2+2βrR22=1+e2β[(βα)r1]R33=sin2θR22\begin{aligned} &R_{00}=e^{2 \alpha-2 \beta}\left(\alpha^{\prime \prime}-\alpha^{\prime} \beta^{\prime}+\alpha^{\prime 2}+\frac{2 \alpha^{\prime}}{r}\right) \\ &R_{11}=-\alpha^{\prime \prime}+\alpha^{\prime} \beta^{\prime}-\alpha^{\prime 2}+\frac{2 \beta^{\prime}}{r} \\ &R_{22}=1+e^{-2 \beta}\left[\left(\beta^{\prime}-\alpha^{\prime}\right) r-1\right] \\ &R_{33}=\sin ^{2} \theta R_{22} \end{aligned}

Note that

α=12Areβα,β=Are2β.]\left.\alpha^{\prime}=\frac{1}{2} A r e^{\beta-\alpha} \quad, \quad \beta^{\prime}=A r e^{2 \beta} .\right]