Paper 2, Section II, D

General Relativity
Part II, 2013

A spacetime contains a one-parameter family of geodesics xa=xa(λ,μ)x^{a}=x^{a}(\lambda, \mu), where λ\lambda is a parameter along each geodesic, and μ\mu labels the geodesics. The tangent to the geodesics is Ta=xa/λT^{a}=\partial x^{a} / \partial \lambda, and Na=xa/μN^{a}=\partial x^{a} / \partial \mu is a connecting vector. Prove that

μTa=λNa\nabla_{\mu} T^{a}=\nabla_{\lambda} N^{a}

and hence derive the equation of geodesic deviation:

λ2Na+RbcdaTbNcTd=0\nabla_{\lambda}^{2} N^{a}+R_{b c d}^{a} T^{b} N^{c} T^{d}=0

[You may assume Rbcda=RbdcaR_{b c d}^{a}=-R_{b d c}^{a} and the Ricci identity in the form

(λμμλ)Ta=RbcdaTbTcNd]\left.\left(\nabla_{\lambda} \nabla_{\mu}-\nabla_{\mu} \nabla_{\lambda}\right) T^{a}=R_{b c d}^{a} T^{b} T^{c} N^{d}\right]

Consider the two-dimensional space consisting of the sphere of radius rr with line element

ds2=r2(dθ2+sin2θdϕ2).d s^{2}=r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .

Show that one may choose Ta=(1,0),Na=(0,1)T^{a}=(1,0), N^{a}=(0,1), and that

θNa=cotθNa.\nabla_{\theta} N^{a}=\cot \theta N^{a} .

Hence show that R=2/r2R=2 / r^{2}, using the geodesic deviation equation and the identity in any two-dimensional space

Rbcda=12R(δcagbdδdagbc)R_{b c d}^{a}=\frac{1}{2} R\left(\delta_{c}^{a} g_{b d}-\delta_{d}^{a} g_{b c}\right)

where RR is the Ricci scalar.

Verify your answer by direct computation of RR.

[You may assume that the only non-zero connection components are

Γϕθϕ=Γθϕϕ=cotθ\Gamma_{\phi \theta}^{\phi}=\Gamma_{\theta \phi}^{\phi}=\cot \theta

and

Γϕϕθ=sinθcosθ.\Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta .

You may also use the definition

Rbcda=Γbd,caΓbc,da+ΓecaΓbdeΓedaΓbce]\left.R_{b c d}^{a}=\Gamma_{b d, c}^{a}-\Gamma_{b c, d}^{a}+\Gamma_{e c}^{a} \Gamma_{b d}^{e}-\Gamma_{e d}^{a} \Gamma_{b c}^{e}\right]