Paper 1, Section II, G

Geometry and Groups
Part II, 2013

Define the modular group Γ\Gamma acting on the upper half-plane.

Describe the set SS of points zz in the upper half-plane that have Im(T(z))Im(z)\operatorname{Im}(T(z)) \leqslant \operatorname{Im}(z) for each TΓT \in \Gamma. Hence find a fundamental set for Γ\Gamma acting on the upper half-plane.

Let AA and JJ be the two Möbius transformations

A:zz+1 and J:z1/zA: z \mapsto z+1 \quad \text { and } \quad J: z \mapsto-1 / z

When is Im(J(z))>Im(z)?\operatorname{Im}(J(z))>\operatorname{Im}(z) ?

For any point zz in the upper half-plane, show that either zSz \in S or else there is an integer kk with

Im(J(Ak(z)))>Im(z)\operatorname{Im}\left(J\left(A^{k}(z)\right)\right)>\operatorname{Im}(z)

Deduce that the modular group is generated by AA and JJ.