Paper 3, Section II, F

Linear Analysis
Part II, 2013

State the Stone-Weierstrass Theorem for real-valued functions.

State Riesz's Lemma.

Let KK be a compact, Hausdorff space and let AA be a subalgebra of C(K)C(K) separating the points of KK and containing the constant functions. Fix two disjoint, non-empty, closed subsets EE and FF of KK.

(i) If xEx \in E show that there exists gAg \in A such that g(x)=0,0g<1g(x)=0,0 \leqslant g<1 on KK, and g>0g>0 on FF. Explain briefly why there is MNM \in \mathbb{N} such that g2Mg \geqslant \frac{2}{M} on FF.

(ii) Show that there is an open cover U1,U2,,UmU_{1}, U_{2}, \ldots, U_{m} of EE, elements g1,g2,,gmg_{1}, g_{2}, \ldots, g_{m} of AA and positive integers M1,M2,,MmM_{1}, M_{2}, \ldots, M_{m} such that

0gr<1 on K,gr2Mr on F,gr<12Mr on Ur0 \leqslant g_{r}<1 \text { on } K, \quad g_{r} \geqslant \frac{2}{M_{r}} \text { on } F, \quad g_{r}<\frac{1}{2 M_{r}} \text { on } U_{r}

for each r=1,2,,mr=1,2, \ldots, m.

(iii) Using the inequality

1Nt(1t)N1Nt(0<t<1,NN)1-N t \leqslant(1-t)^{N} \leqslant \frac{1}{N t} \quad(0<t<1, N \in \mathbb{N})

show that for sufficiently large positive integers n1,n2,,nmn_{1}, n_{2}, \ldots, n_{m}, the element

hr=1(1grnr)Mrnrh_{r}=1-\left(1-g_{r}^{n_{r}}\right)^{M_{r}^{n_{r}}}

of AA satisfies

0hr1 on K,hr14 on Ur,hr(34)1m on F0 \leqslant h_{r} \leqslant 1 \text { on } K, \quad h_{r} \leqslant \frac{1}{4} \text { on } U_{r}, \quad h_{r} \geqslant\left(\frac{3}{4}\right)^{\frac{1}{m}} \text { on } F

for each r=1,2,,mr=1,2, \ldots, m.

(iv) Show that the element h=h1h2hm12h=h_{1} \cdot h_{2} \cdots \cdot h_{m}-\frac{1}{2} of AA satisfies

12h12 on K,h14 on E,h14 on F-\frac{1}{2} \leqslant h \leqslant \frac{1}{2} \text { on } K, \quad h \leqslant-\frac{1}{4} \text { on } E, \quad h \geqslant \frac{1}{4} \text { on } F \text {. }

Now let fC(K)f \in C(K) with f1\|f\| \leqslant 1. By considering the sets {xK:f(x)14}\left\{x \in K: f(x) \leqslant-\frac{1}{4}\right\} and {xK:f(x)14}\left\{x \in K: f(x) \geqslant \frac{1}{4}\right\}, show that there exists hAh \in A such that fh34\|f-h\| \leqslant \frac{3}{4}. Deduce that AA is dense in C(K)C(K).