Paper 2, Section II, F

Linear Analysis
Part II, 2013

Let XX be a Banach space. Let T:XT: X \rightarrow \ell_{\infty} be a bounded linear operator. Show that there is a bounded sequence (fn)n=1\left(f_{n}\right)_{n=1}^{\infty} in XX^{*} such that Tx=(fnx)n=1T x=\left(f_{n} x\right)_{n=1}^{\infty} for all xXx \in X.

Fix 1<p<1<p<\infty. Define the Banach space p\ell_{p} and briefly explain why it is separable. Show that for xpx \in \ell_{p} there exists fpf \in \ell_{p}^{*} such that f=1\|f\|=1 and f(x)=xpf(x)=\|x\|_{p}. [You may use Hölder's inequality without proof.]

Deduce that p\ell_{p} embeds isometrically into \ell_{\infty}.