Paper 3, Section II, G
Part II, 2013
Explain carefully what is meant by syntactic entailment and semantic entailment in the propositional calculus. State the Completeness Theorem for the propositional calculus, and deduce the Compactness Theorem.
Suppose and are pairwise disjoint sets of primitive propositions, and let and be propositional formulae such that is a theorem of the propositional calculus. Consider the set
Show that is inconsistent, and deduce that there exists such that both and are theorems. [Hint: assuming is consistent, take a suitable valuation of and show that
is inconsistent. The Deduction Theorem may be assumed without proof.]