Paper 1, Section II, H

Number Fields
Part II, 2013

Let fZ[X]f \in \mathbb{Z}[X] be a monic irreducible polynomial of degree nn. Let K=Q(α)K=\mathbb{Q}(\alpha), where α\alpha is a root of ff.

(i) Show that if disc(f)\operatorname{disc}(f) is square-free then OK=Z[α]\mathcal{O}_{K}=\mathbb{Z}[\alpha].

(ii) In the case f(X)=X33X25f(X)=X^{3}-3 X-25 find the minimal polynomial of β=3/(1α)\beta=3 /(1-\alpha) and hence compute the discriminant of KK. What is the index of Z[α]\mathbb{Z}[\alpha] in OK\mathcal{O}_{K} ?

[Recall that the discriminant of X3+pX+qX^{3}+p X+q is 4p327q2-4 p^{3}-27 q^{2}.]