Paper 2, Section II, A

Applications of Quantum Mechanics
Part II, 2014

(a) A classical particle of mass mm scatters on a central potential V(r)V(r) with energy EE, impact parameter bb, and scattering angle θ\theta. Define the corresponding differential cross-section.

For particle trajectories in the Coulomb potential,

VC(r)=e24πϵ0rV_{C}(r)=\frac{e^{2}}{4 \pi \epsilon_{0} r}

the impact parameter is given by

b=e28πϵ0Ecot(θ2)b=\frac{e^{2}}{8 \pi \epsilon_{0} E} \cot \left(\frac{\theta}{2}\right)

Find the differential cross-section as a function of EE and θ\theta.

(b) A quantum particle of mass mm and energy E=2k2/2mE=\hbar^{2} k^{2} / 2 m scatters in a localised potential V(r)V(\mathbf{r}). With reference to the asymptotic form of the wavefunction at large r|\mathbf{r}|, define the scattering amplitude f(k,k)f\left(\mathbf{k}, \mathbf{k}^{\prime}\right) as a function of the incident and outgoing wavevectors k\mathbf{k} and k\mathbf{k}^{\prime} (where k=k=k|\mathbf{k}|=\left|\mathbf{k}^{\prime}\right|=k ). Define the differential cross-section for this process and express it in terms of f(k,k)f\left(\mathbf{k}, \mathbf{k}^{\prime}\right).

Now consider a potential of the form V(r)=λU(r)V(\mathbf{r})=\lambda U(\mathbf{r}), where λ1\lambda \ll 1 is a dimensionless coupling and UU does not depend on λ\lambda. You may assume that the Schrödinger equation for the wavefunction ψ(k;r)\psi(\mathbf{k} ; \mathbf{r}) of a scattering state with incident wavevector k\mathbf{k} may be written as the integral equation

ψ(k;r)=exp(ikr)+2mλ2d3rG0(+)(k;rr)U(r)ψ(k;r)\psi(\mathbf{k} ; \mathbf{r})=\exp (i \mathbf{k} \cdot \mathbf{r})+\frac{2 m \lambda}{\hbar^{2}} \int d^{3} r^{\prime} \mathcal{G}_{0}^{(+)}\left(k ; \mathbf{r}-\mathbf{r}^{\prime}\right) U\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{k} ; \mathbf{r}^{\prime}\right)

where

G0(+)(k;r)=14πexp(ikr)r\mathcal{G}_{0}^{(+)}(k ; \mathbf{r})=-\frac{1}{4 \pi} \frac{\exp (i k|\mathbf{r}|)}{|\mathbf{r}|}

Show that the corresponding scattering amplitude is given by

f(k,k)=mλ2π2d3rexp(ikr)U(r)ψ(k;r)f\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=-\frac{m \lambda}{2 \pi \hbar^{2}} \int d^{3} r^{\prime} \exp \left(-i \mathbf{k}^{\prime} \cdot \mathbf{r}^{\prime}\right) U\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{k} ; \mathbf{r}^{\prime}\right)

By expanding the wavefunction in powers of λ\lambda and keeping only the leading term, calculate the leading-order contribution to the differential cross-section, and evaluate it for the case of the Yukawa potential

V(r)=λexp(μr)rV(\mathbf{r})=\lambda \frac{\exp (-\mu r)}{r}

By taking a suitable limit, obtain the differential cross-section for quantum scattering in the Coulomb potential VC(r)V_{C}(r) defined in Part (a) above, correct to leading order in an expansion in powers of the constant α~=e2/4πϵ0\tilde{\alpha}=e^{2} / 4 \pi \epsilon_{0}. Express your answer as a function of the particle energy EE and scattering angle θ\theta, and compare it to the corresponding classical cross-section calculated in Part (a).

Part II, 20142014 \quad List of Questions

[TURN OVER