Paper 3, Section II, F

Number Theory
Part II, 2014

State and prove Lagrange's theorem about polynomial congruences modulo a prime.

Define the Euler totient function ϕ\phi.

Let pp be a prime and let dd be a positive divisor of p1p-1. Show that there are exactly ϕ(d)\phi(d) elements of (Z/pZ)×(\mathbb{Z} / p \mathbb{Z})^{\times}with order d.d .

Deduce that (Z/pZ)×(\mathbb{Z} / p \mathbb{Z})^{\times}is cyclic.

Let gg be a primitive root modulo p2p^{2}. Show that gg must be a primitive root modulo pp.

Let gg be a primitive root modulo pp. Must it be a primitive root modulo p2p^{2} ? Give a proof or a counterexample.