Paper 3, Section II, D

Partial Differential Equations
Part II, 2014

(a) Consider variable-coefficient operators of the form

Pu=j,k=1najkjku+j=1nbjju+cuP u=-\sum_{j, k=1}^{n} a_{j k} \partial_{j} \partial_{k} u+\sum_{j=1}^{n} b_{j} \partial_{j} u+c u

whose coefficients are defined on a bounded open set ΩRn\Omega \subset \mathbb{R}^{n} with smooth boundary Ω\partial \Omega. Let ajka_{j k} satisfy the condition of uniform ellipticity, namely

mξ2j,k=1najk(x)ξjξkMξ2 for all xΩ and ξRnm\|\xi\|^{2} \leqslant \sum_{j, k=1}^{n} a_{j k}(x) \xi_{j} \xi_{k} \leqslant M\|\xi\|^{2} \quad \text { for all } x \in \Omega \text { and } \xi \in \mathbb{R}^{n}

for suitably chosen positive numbers m,Mm, M.

State and prove the weak maximum principle for solutions of Pu=0P u=0. [Any results from linear algebra and calculus needed in your proof should be stated clearly, but need not be proved.]

(b) Consider the nonlinear elliptic equation

Δu+eu=f-\Delta u+e^{u}=f

for u:RnRu: \mathbb{R}^{n} \rightarrow \mathbb{R} satisfying the additional condition

limxu(x)=0.\lim _{|x| \rightarrow \infty} u(x)=0 .

Assume that fS(Rn)f \in \mathcal{S}\left(\mathbb{R}^{n}\right). Prove that any two C2C^{2} solutions of (1) which also satisfy (2) are equal.

Now let uC2(Rn)u \in C^{2}\left(\mathbb{R}^{n}\right) be a solution of (1)(1) and (2). Prove that if f(x)<1f(x)<1 for all xx then u(x)<0u(x)<0 for all xx. Prove that if maxxf(x)=L1\max _{x} f(x)=L \geqslant 1 then u(x)lnLu(x) \leqslant \ln L for all xx.