Paper 2, Section II, D

Partial Differential Equations
Part II, 2014

In this question, functions are all real-valued, and

Hpers={u=mZu^(m)eimxL2:uHs2=mZ(1+m2)su^(m)2<}H_{p e r}^{s}=\left\{u=\sum_{m \in \mathbb{Z}} \hat{u}(m) e^{i m x} \in L^{2}:\|u\|_{H^{s}}^{2}=\sum_{m \in \mathbb{Z}}\left(1+m^{2}\right)^{s}|\hat{u}(m)|^{2}<\infty\right\}

are the Sobolev spaces of functions 2π2 \pi-periodic in xx, for s=0,1,2,s=0,1,2, \ldots

State Parseval's theorem. For s=0,1s=0,1 prove that the norm uHs\|u\|_{H^{s}} is equivalent to the norm ||s_{s} defined by

us2=r=0sπ+π(xru)2dx\|u\|_{s}^{2}=\sum_{r=0}^{s} \int_{-\pi}^{+\pi}\left(\partial_{x}^{r} u\right)^{2} d x

Consider the Cauchy problem

utuxx=f,u(x,0)=u0(x),t0,u_{t}-u_{x x}=f, \quad u(x, 0)=u_{0}(x), \quad t \geqslant 0,

where f=f(x,t)f=f(x, t) is a smooth function which is 2π2 \pi-periodic in xx, and the initial value u0u_{0} is also smooth and 2π2 \pi-periodic. Prove that if uu is a smooth solution which is 2π2 \pi-periodic in xx, then it satisfies

0T(ut2+uxx2)dtC(u0H12+0Tππf(x,t)2dxdt)\int_{0}^{T}\left(u_{t}^{2}+u_{x x}^{2}\right) d t \leqslant C\left(\left\|u_{0}\right\|_{H^{1}}^{2}+\int_{0}^{T} \int_{-\pi}^{\pi}|f(x, t)|^{2} d x d t\right)

for some number C>0C>0 which does not depend on uu or ff.

State the Lax-Milgram lemma. Prove, using the Lax-Milgram lemma, that if

f(x,t)=eλtg(x)f(x, t)=e^{\lambda t} g(x)

with gHper0g \in H_{p e r}^{0} and λ>0\lambda>0, then there exists a weak solution to (1) of the form u(x,t)=eλtϕ(x)u(x, t)=e^{\lambda t} \phi(x) with ϕHper. 1\phi \in H_{\text {per. }}^{1}. Does the same hold for all λR\lambda \in \mathbb{R} ? Briefly explain your answer.