Paper 3, Section II, A

Principles of Quantum Mechanics
Part II, 2014

Let J=(J1,J2,J3)\mathbf{J}=\left(J_{1}, J_{2}, J_{3}\right) and jm|j m\rangle denote the standard angular-momentum operators and states so that, in units where =1\hbar=1,

J2jm=j(j+1)jm,J3jm=mjm\mathbf{J}^{2}|j m\rangle=j(j+1)|j m\rangle, \quad J_{3}|j m\rangle=m|j m\rangle

Show that U(θ)=exp(iθJ2)U(\theta)=\exp \left(-i \theta J_{2}\right) is unitary. Define

Ji(θ)=U(θ)JiU1(θ) for i=1,2,3J_{i}(\theta)=U(\theta) J_{i} U^{-1}(\theta) \quad \text { for } i=1,2,3

and

jmθ=U(θ)jm|j m\rangle_{\theta}=U(\theta)|j m\rangle \text {. }

Find expressions for J1(θ),J2(θ)J_{1}(\theta), J_{2}(\theta) and J3(θ)J_{3}(\theta) as linear combinations of J1,J2J_{1}, J_{2} and J3J_{3}. Briefly explain why U(θ)U(\theta) represents a rotation of J\mathbf{J} through angle θ\theta about the 2-axis.

Show that

J3(θ)jmθ=mjmθJ_{3}(\theta)|j m\rangle_{\theta}=m|j m\rangle_{\theta}

Express 10θ|10\rangle_{\theta} as a linear combination of the states 1m,m=1,0,1|1 m\rangle, m=-1,0,1. By expressing J1J_{1} in terms of J±J_{\pm}, use ()(*) to determine the coefficients in this expansion.

A particle of spin 1 is in the state 10|10\rangle at time t=0t=0. It is subject to the Hamiltonian

H=μBJH=-\mu \mathbf{B} \cdot \mathbf{J}

where B=(0,B,0)\mathbf{B}=(0, \mathbf{B}, 0). At time tt the value of J3J_{3} is measured and found to be J3=0J_{3}=0. At time 2t2 t the value of J3J_{3} is measured again and found to be J3=1J_{3}=1. Show that the joint probability for these two values to be measured is

18sin2(2μBt).\frac{1}{8} \sin ^{2}(2 \mu B t) .

[The following result may be quoted: J±jm=(jm)(j±m+1)jm±1.]\left.J_{\pm}|j m\rangle=\sqrt{(j \mp m)(j \pm m+1)}|j m \pm 1\rangle .\right]