Paper 2, Section II, A

Principles of Quantum Mechanics
Part II, 2014

(i) Let aa and aa^{\dagger} be the annihilation and creation operators, respectively, for a simple harmonic oscillator whose Hamiltonian is

H0=ω(aa+12),H_{0}=\omega\left(a^{\dagger} a+\frac{1}{2}\right),

with [a,a]=1\left[a, a^{\dagger}\right]=1. Explain how the set of eigenstates {n:n=0,1,2,}\{|n\rangle: n=0,1,2, \ldots\} of H0H_{0} is obtained and deduce the corresponding eigenvalues. Show that

(ii) Consider a system whose unperturbed Hamiltonian is

H0=(aa+12)+2(bb+12)H_{0}=\left(a^{\dagger} a+\frac{1}{2}\right)+2\left(b^{\dagger} b+\frac{1}{2}\right)

where [a,a]=1,[b,b]=1\left[a, a^{\dagger}\right]=1, \quad\left[b, b^{\dagger}\right]=1 and all other commutators are zero. Find the degeneracies of the eigenvalues of H0H_{0} with energies E0=32,52,72,92E_{0}=\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2} and 112\frac{11}{2}.

The system is perturbed so that it is now described by the Hamiltonian

H=H0+λH,H=H_{0}+\lambda H^{\prime},

where H=(a)2b+a2bH^{\prime}=\left(a^{\dagger}\right)^{2} b+a^{2} b^{\dagger}. Using degenerate perturbation theory, calculate to O(λ)O(\lambda) the energies of the eigenstates associated with the level E0=92E_{0}=\frac{9}{2}.

Write down the eigenstates, to O(λ)O(\lambda), associated with these perturbed energies. By explicit evaluation show that they are in fact exact eigenstates of HH with these energies as eigenvalues.

a0=0an=nn1,n1,an=n+1n+1,n0.\begin{aligned} & a|0\rangle=0 \\ & a|n\rangle=\sqrt{n}|n-1\rangle, \quad n \geqslant 1, \\ & a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad n \geqslant 0 . \end{aligned}