Paper 1, Section II, A

Principles of Quantum Mechanics
Part II, 2014

Let x^,p^\hat{x}, \hat{p} and H(x^,p^)=p^2/2m+V(x^)H(\hat{x}, \hat{p})=\hat{p}^{2} / 2 m+V(\hat{x}) be the position operator, momentum operator and Hamiltonian for a particle moving in one dimension. Let ψ|\psi\rangle be the state vector for the particle. The position and momentum eigenstates have inner products

xp=12πexp(ipx/),xx=δ(xx) and pp=δ(pp).\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \exp (i p x / \hbar), \quad\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right) \quad \text { and } \quad\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right) .

Show that

xp^ψ=ixψ(x) and px^ψ=ipψ~(p)\langle x|\hat{p}| \psi\rangle=-i \hbar \frac{\partial}{\partial x} \psi(x) \quad \text { and } \quad\langle p|\hat{x}| \psi\rangle=i \hbar \frac{\partial}{\partial p} \tilde{\psi}(p)

where ψ(x)\psi(x) and ψ~(p)\tilde{\psi}(p) are the wavefunctions in the position representation and momentum representation, respectively. Show how ψ(x)\psi(x) and ψ~(p)\tilde{\psi}(p) may be expressed in terms of each other.

For general V(x^)V(\hat{x}), express pV(x^)ψ\langle p|V(\hat{x})| \psi\rangle in terms of ψ~(p)\tilde{\psi}(p), and hence write down the time-independent Schrödinger equation in the momentum representation satisfied by ψ~(p)\tilde{\psi}(p).

Consider now the case V(x)=(2λ/m)δ(x),λ>0V(x)=-\left(\hbar^{2} \lambda / m\right) \delta(x), \lambda>0. Show that there is a bound state with energy E=ε,ε>0E=-\varepsilon, \varepsilon>0, with wavefunction ψ~(p)\tilde{\psi}(p) satisfying

ψ~(p)=λπ12mε+p2ψ~(p)dp\tilde{\psi}(p)=\frac{\hbar \lambda}{\pi} \frac{1}{2 m \varepsilon+p^{2}} \int_{-\infty}^{\infty} \tilde{\psi}\left(p^{\prime}\right) d p^{\prime}

Hence show that there is a unique value for ε\varepsilon and determine this value.