Paper 4, Section II, H
Let .
(i) Sketch a proof that there is an isomorphism of topological groups
(ii) Let be the irreducible complex representation of of dimension 3. Compute the character of the (symmetric power) representation of for any . Show that the dimension of the space of invariants , meaning the subspace of where acts trivially, is 1 for even and 0 for odd. [Hint: You may find it helpful to restrict to the unit circle subgroup . The irreducible characters of may be quoted without proof.]
Using the fact that yields the standard 3-dimensional representation of , show that . Deduce that the ring of complex polynomials in three variables which are invariant under the action of is a polynomial ring in one generator. Find a generator for this polynomial ring.