Paper 3, Section II, H

Representation Theory
Part II, 2014

(i) State Frobenius' theorem for transitive permutation groups acting on a finite set. Define Frobenius group and show that any finite Frobenius group (with an appropriate action) satisfies the hypotheses of Frobenius' theorem.

(ii) Consider the group

Fp,q:=a,b:ap=bq=1,b1ab=auF_{p, q}:=\left\langle a, b: a^{p}=b^{q}=1, b^{-1} a b=a^{u}\right\rangle

where pp is prime, qq divides p1p-1 ( qq not necessarily prime), and uu has multiplicative order qq modulo pp (such elements uu exist since qq divides p1)p-1). Let SS be the subgroup of Zp×\mathbb{Z}_{p}^{\times} consisting of the powers of uu, so that S=q|S|=q. Write r=(p1)/qr=(p-1) / q, and let v1,,vrv_{1}, \ldots, v_{r} be coset representatives for SS in Zp×\mathbb{Z}_{p}^{\times}.

(a) Show that Fp,qF_{p, q} has q+rq+r conjugacy classes and that a complete list of the classes comprises {1},{avjs:sS}(1jr)\{1\},\left\{a^{v_{j} s}: s \in S\right\}(1 \leqslant j \leqslant r) and {ambn:0mp1}(1nq1)\left\{a^{m} b^{n}: 0 \leqslant m \leqslant p-1\right\}(1 \leqslant n \leqslant q-1).

(b) By observing that the derived subgroup Fp,q=aF_{p, q}^{\prime}=\langle a\rangle, find qq 1-dimensional characters of Fp,qF_{p, q}. [Appropriate results may be quoted without proof.]

(c) Let ε=e2πi/p\varepsilon=e^{2 \pi i / p}. For vZp×v \in \mathbb{Z}_{p}^{\times}denote by ψv\psi_{v} the character of a\langle a\rangle defined by ψv(ax)=εvx(0xp1)\psi_{v}\left(a^{x}\right)=\varepsilon^{v x}(0 \leqslant x \leqslant p-1). By inducing these characters to Fp,qF_{p, q}, or otherwise, find rr distinct irreducible characters of degree qq.