Paper 2, Section I, GTopics in AnalysisPart II, 2014State Chebyshev's equal ripple criterion.Leth(t)=∏ℓ=1n(t−cos(2ℓ−1)π2n)h(t)=\prod_{\ell=1}^{n}\left(t-\cos \frac{(2 \ell-1) \pi}{2 n}\right)h(t)=ℓ=1∏n(t−cos2n(2ℓ−1)π)Show that if q(t)=∑j=0najtjq(t)=\sum_{j=0}^{n} a_{j} t^{j}q(t)=∑j=0najtj where a0,…,ana_{0}, \ldots, a_{n}a0,…,an are real constants with ∣an∣⩾1\left|a_{n}\right| \geqslant 1∣an∣⩾1, thensupt∈[−1,1]∣h(t)∣⩽supt∈[−1,1]∣q(t)∣\sup _{t \in[-1,1]}|h(t)| \leqslant \sup _{t \in[-1,1]}|q(t)|t∈[−1,1]sup∣h(t)∣⩽t∈[−1,1]sup∣q(t)∣