Paper 2, Section I, G

Topics in Analysis
Part II, 2014

State Chebyshev's equal ripple criterion.

Let

h(t)==1n(tcos(21)π2n)h(t)=\prod_{\ell=1}^{n}\left(t-\cos \frac{(2 \ell-1) \pi}{2 n}\right)

Show that if q(t)=j=0najtjq(t)=\sum_{j=0}^{n} a_{j} t^{j} where a0,,ana_{0}, \ldots, a_{n} are real constants with an1\left|a_{n}\right| \geqslant 1, then

supt[1,1]h(t)supt[1,1]q(t)\sup _{t \in[-1,1]}|h(t)| \leqslant \sup _{t \in[-1,1]}|q(t)|