Paper 2, Section II, G

Topics in Analysis
Part II, 2014

Let γ:[0,1]C\gamma:[0,1] \rightarrow \mathbb{C} be a continuous map never taking the value 0 and satisfying γ(0)=γ(1)\gamma(0)=\gamma(1). Define the degree (or winding number) w(γ;0)w(\gamma ; 0) of γ\gamma about 0 . Prove the following:

(i) w(1/γ;0)=w(γ;0)w(1 / \gamma ; 0)=w\left(\gamma^{-} ; 0\right), where γ(t)=γ(1t)\gamma^{-}(t)=\gamma(1-t).

(ii) If σ:[0,1]C\sigma:[0,1] \rightarrow \mathbb{C} is continuous, σ(0)=σ(1)\sigma(0)=\sigma(1) and σ(t)<γ(t)|\sigma(t)|<|\gamma(t)| for each 0t10 \leqslant t \leqslant 1, then w(γ+σ;0)=w(γ;0)w(\gamma+\sigma ; 0)=w(\gamma ; 0).

(iii) If γm:[0,1]C,m=1,2,\gamma_{m}:[0,1] \rightarrow \mathbb{C}, m=1,2, \ldots, are continuous maps with γm(0)=γm(1)\gamma_{m}(0)=\gamma_{m}(1), which converge to γ\gamma uniformly on [0,1][0,1] as mm \rightarrow \infty, then w(γm;0)=w(γ;0)w\left(\gamma_{m} ; 0\right)=w(\gamma ; 0) for sufficiently large mm.

Let α:[0,1]C\{0}\alpha:[0,1] \rightarrow \mathbb{C} \backslash\{0\} be a continuous map such that α(0)=α(1)\alpha(0)=\alpha(1) and α(t)e2πit1\left|\alpha(t)-e^{2 \pi i t}\right| \leqslant 1 for each t[0,1]t \in[0,1]. Deduce from the results of (ii) and (iii) that w(α;0)=1w(\alpha ; 0)=1.

[You may not use homotopy invariance of the winding number without proof.]