Paper 1, Section II, C

Asymptotic Methods
Part II, 2014

(a) Consider the integral

I(k)=0f(t)ektdt,k>0I(k)=\int_{0}^{\infty} f(t) e^{-k t} d t, \quad k>0

Suppose that f(t)f(t) possesses an asymptotic expansion for t0+t \rightarrow 0^{+}of the form

f(t)tαn=0antβn,α>1,β>0f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_{n} t^{\beta n}, \quad \alpha>-1, \quad \beta>0

where ana_{n} are constants. Derive an asymptotic expansion for I(k)I(k) as kk \rightarrow \infty in the form

I(k)n=0Ankγ+βnI(k) \sim \sum_{n=0}^{\infty} \frac{A_{n}}{k^{\gamma+\beta n}}

giving expressions for AnA_{n} and γ\gamma in terms of α,β,n\alpha, \beta, n and the gamma function. Hence establish the asymptotic approximation as kk \rightarrow \infty

I1(k)=01ektta(1t2)bdt2bΓ(1b)ekkb1(1+(a+b/2)(1b)k)I_{1}(k)=\int_{0}^{1} e^{k t} t^{-a}\left(1-t^{2}\right)^{-b} d t \sim 2^{-b} \Gamma(1-b) e^{k} k^{b-1}\left(1+\frac{(a+b / 2)(1-b)}{k}\right)

where a<1,b<1a<1, b<1.

(b) Using Laplace's method, or otherwise, find the leading-order asymptotic approximation as kk \rightarrow \infty for

I2(k)=0e(2k2/t+t2/k)dtI_{2}(k)=\int_{0}^{\infty} e^{-\left(2 k^{2} / t+t^{2} / k\right)} d t

[You may assume that Γ(z)=0tz1etdt\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t for Rez>0\operatorname{Re} z>0,

 and that eqt2dt=π/q for q>0.]\text { and that } \left.\int_{-\infty}^{\infty} e^{-q t^{2}} d t=\sqrt{\pi / q} \text { for } q>0 .\right]