Paper 2, Section I, E

Cosmology
Part II, 2014

A self-gravitating fluid with density ρ\rho, pressure P(ρ)P(\rho) and velocity v\mathbf{v} in a gravitational potential Φ\Phi obeys the equations

ρt+(ρv)=0vt+(v)v+Pρ+Φ=02Φ=4πGρ\begin{aligned} \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v}) &=0 \\ \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\frac{\nabla P}{\rho}+\nabla \Phi &=\mathbf{0} \\ \nabla^{2} \Phi &=4 \pi G \rho \end{aligned}

Assume that there exists a static constant solution of these equations with v=0,ρ=ρ0\mathbf{v}=\mathbf{0}, \rho=\rho_{0} and Φ=Φ0\Phi=\Phi_{0}, for which Φ0\nabla \Phi_{0} can be neglected. This solution is perturbed. Show that, to first order in the perturbed quantities, the density perturbations satisfy

2ρ1t2=cs22ρ1+4πGρ0ρ1\frac{\partial^{2} \rho_{1}}{\partial t^{2}}=c_{s}^{2} \nabla^{2} \rho_{1}+4 \pi G \rho_{0} \rho_{1}

where ρ=ρ0+ρ1(x,t)\rho=\rho_{0}+\rho_{1}(\mathbf{x}, t) and cs2=dP/dρc_{s}^{2}=d P / d \rho. Show that there are solutions to this equation of the form

ρ1(x,t)=Aexp[ikx+iωt]\rho_{1}(\mathbf{x}, t)=A \exp [-i \mathbf{k} \cdot \mathbf{x}+i \omega t]

where A,ωA, \omega and k\mathbf{k} are constants and

ω2=cs2kk4πGρ0\omega^{2}=c_{s}^{2} \mathbf{k} \cdot \mathbf{k}-4 \pi G \rho_{0}

Interpret these solutions physically in the limits of small and large k|\mathbf{k}|, explaining what happens to density perturbations on large and small scales, and determine the critical wavenumber that divides the two distinct behaviours of the perturbation.