Paper 3, Section II, F

Algebraic Topology
Part II, 2014

Let KK be a simplicial complex in RN\mathbb{R}^{N}, which we may also consider as lying in RN+1\mathbb{R}^{N+1} using the first NN coordinates. Write c=(0,0,,0,1)RN+1c=(0,0, \ldots, 0,1) \in \mathbb{R}^{N+1}. Show that if v0,v1,,vn\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle is a simplex of KK then v0,v1,,vn,c\left\langle v_{0}, v_{1}, \ldots, v_{n}, c\right\rangle is a simplex in RN+1\mathbb{R}^{N+1}.

Let LKL \leqslant K be a subcomplex and let Kˉ\bar{K} be the collection

K{v0,v1,,vn,cv0,v1,,vnL}{c}K \cup\left\{\left\langle v_{0}, v_{1}, \ldots, v_{n}, c\right\rangle \mid\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle \in L\right\} \cup\{\langle c\rangle\}

of simplices in RN+1\mathbb{R}^{N+1}. Show that Kˉ\bar{K} is a simplicial complex.

If K|K| is a Möbius band, and L|L| is its boundary, show that

Hi(Kˉ){Z if i=0Z/2 if i=10 if i2H_{i}(\bar{K}) \cong \begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} / 2 & \text { if } i=1 \\ 0 & \text { if } i \geqslant 2\end{cases}