Paper 2, Section II, 14B

Further Complex Methods
Part II, 2014

Use the Euler product formula

Γ(z)=limnn!nzz(z+1)(z+n)\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n ! n^{z}}{z(z+1) \ldots(z+n)}

to show that:

(i) Γ(z+1)=zΓ(z)\Gamma(z+1)=z \Gamma(z);

(ii) 1Γ(z)=zeγzk=1(1+zk)ez/k\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right) e^{-z / k}, where γ=limn(1+12++1nlogn)\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right).

Deduce that

ddzlog(Γ(z))=γ1z+zk=11k(z+k)\frac{d}{d z} \log (\Gamma(z))=-\gamma-\frac{1}{z}+z \sum_{k=1}^{\infty} \frac{1}{k(z+k)}