Paper 2, Section II, 14BFurther Complex MethodsPart II, 2014Use the Euler product formulaΓ(z)=limn→∞n!nzz(z+1)…(z+n)\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n ! n^{z}}{z(z+1) \ldots(z+n)}Γ(z)=n→∞limz(z+1)…(z+n)n!nzto show that:(i) Γ(z+1)=zΓ(z)\Gamma(z+1)=z \Gamma(z)Γ(z+1)=zΓ(z);(ii) 1Γ(z)=zeγz∏k=1∞(1+zk)e−z/k\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right) e^{-z / k}Γ(z)1=zeγz∏k=1∞(1+kz)e−z/k, where γ=limn→∞(1+12+⋯+1n−logn)\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)γ=limn→∞(1+21+⋯+n1−logn).Deduce thatddzlog(Γ(z))=−γ−1z+z∑k=1∞1k(z+k)\frac{d}{d z} \log (\Gamma(z))=-\gamma-\frac{1}{z}+z \sum_{k=1}^{\infty} \frac{1}{k(z+k)}dzdlog(Γ(z))=−γ−z1+zk=1∑∞k(z+k)1