Paper 3, Section II, 37E37 \mathrm{E}

General Relativity
Part II, 2014

The vector field VaV^{a} is the normalised (VaVa=c2)\left(V_{a} V^{a}=-c^{2}\right) tangent to a congruence of timelike geodesics, and Bab=bVaB_{a b}=\nabla_{b} V_{a}.

Show that:

(i) VaBab=VbBab=0V^{a} B_{a b}=V^{b} B_{a b}=0;

(ii) VccBab=BbcBacRacbdVcVdV^{c} \nabla_{c} B_{a b}=-B_{b}^{c} B_{a c}-R_{a c b}^{d} V^{c} V_{d}.

[You may use the Ricci identity cbXa=bcXaRacbdXd\nabla_{c} \nabla_{b} X_{a}=\nabla_{b} \nabla_{c} X_{a}-R_{a c b}^{d} X_{d}.]

Now assume that BabB_{a b} is symmetric and let θ=Baa\theta=B_{a}{ }^{a}. By writing Bab=B~ab+14θgabB_{a b}=\widetilde{B}_{a b}+\frac{1}{4} \theta g_{a b}, or otherwise, show that

dθdτ14θ2R00\frac{d \theta}{d \tau} \leqslant-\frac{1}{4} \theta^{2}-R_{00}

where R00=RabVaVbR_{00}=R_{a b} V^{a} V^{b} and dθdτVaaθ\frac{d \theta}{d \tau} \equiv V^{a} \nabla_{a} \theta. [You may use without proof the result that \left.\widetilde{B}_{a b} \widetilde{B}^{a b} \geqslant 0 .\right]

Assume, in addition, that the stress-energy tensor TabT_{a b} takes the perfect-fluid form (ρ+p/c2)VaVb+pgab\left(\rho+p / c^{2}\right) V_{a} V_{b}+p g_{a b} and that ρc2+3p>0\rho c^{2}+3 p>0. Show that

dθ1dτ>14\frac{d \theta^{-1}}{d \tau}>\frac{1}{4}

and deduce that, if θ(0)<0\theta(0)<0, then θ(τ)|\theta(\tau)| will become unbounded for some value of τ\tau less than 4/θ(0)4 /|\theta(0)|.