Paper 1, Section II, 37E

General Relativity
Part II, 2014

For a timelike geodesic in the equatorial plane (θ=12π)\left(\theta=\frac{1}{2} \pi\right) of the Schwarzschild spacetime with line element

ds2=(1rs/r)c2dt2+(1rs/r)1dr2+r2(dθ2+sin2θdϕ2)d s^{2}=-\left(1-r_{s} / r\right) c^{2} d t^{2}+\left(1-r_{s} / r\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)

derive the equation

12r˙2+V(r)=12(E/c)2\frac{1}{2} \dot{r}^{2}+V(r)=\frac{1}{2}(E / c)^{2}

where

2V(r)c2=1rsr+h2c2r2h2rsc2r3\frac{2 V(r)}{c^{2}}=1-\frac{r_{s}}{r}+\frac{h^{2}}{c^{2} r^{2}}-\frac{h^{2} r_{s}}{c^{2} r^{3}}

and hh and EE are constants. The dot denotes the derivative with respect to an affine parameter τ\tau satisfying c2dτ2=ds2c^{2} d \tau^{2}=-d s^{2}.

Given that there is a stable circular orbit at r=Rr=R, show that

h2c2=R2ϵ23ϵ\frac{h^{2}}{c^{2}}=\frac{R^{2} \epsilon}{2-3 \epsilon}

where ϵ=rs/R\epsilon=r_{s} / R.

Compute Ω\Omega, the orbital angular frequency (with respect to τ\tau ).

Show that the angular frequency ω\omega of small radial perturbations is given by

ω2R2c2=ϵ(13ϵ)23ϵ\frac{\omega^{2} R^{2}}{c^{2}}=\frac{\epsilon(1-3 \epsilon)}{2-3 \epsilon}

Deduce that the rate of precession of the perihelion of the Earth's orbit, Ωω\Omega-\omega, is approximately 3Ω3T23 \Omega^{3} T^{2}, where TT is the time taken for light to travel from the Sun to the Earth. [You should assume that the Earth's orbit is approximately circular, with rs/R1r_{s} / R \ll 1 and Ec2.]\left.E \simeq c^{2} .\right]