Paper 4, Section II, I

Graph Theory
Part II, 2014

Define the Ramsey number R(r)(s,t)R^{(r)}(s, t). What is the value of R(1)(s,t)R^{(1)}(s, t) ? Prove that R(r)(s,t)1+R(r1)(R(r)(s1,t),R(r)(s,t1))R^{(r)}(s, t) \leqslant 1+R^{(r-1)}\left(R^{(r)}(s-1, t), R^{(r)}(s, t-1)\right) holds for r2r \geqslant 2 and deduce that R(r)(s,t)R^{(r)}(s, t) exists.

Show that R(2)(3,3)=6R^{(2)}(3,3)=6 and that R(2)(3,4)=9R^{(2)}(3,4)=9.

Show that 7R(3)(4,4)197 \leqslant R^{(3)}(4,4) \leqslant 19. [Hint: For the lower bound, choose a suitable subset UU and colour e red if Ue|U \cap e| is odd.]