Paper 3, Section II, D

Integrable Systems
Part II, 2014

What does it mean to say that a finite-dimensional Hamiltonian system is integrable? State the Arnold-Liouville theorem.

A six-dimensional dynamical system with coordinates (x1,x2,x3,y1,y2,y3)\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right) is governed by the differential equations

dxi dt=12πjiΓj(yiyj)(xixj)2+(yiyj)2,dyi dt=12πjiΓj(xixj)(xixj)2+(yiyj)2\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=-\frac{1}{2 \pi} \sum_{j \neq i} \frac{\Gamma_{j}\left(y_{i}-y_{j}\right)}{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}, \quad \frac{\mathrm{d} y_{i}}{\mathrm{~d} t}=\frac{1}{2 \pi} \sum_{j \neq i} \frac{\Gamma_{j}\left(x_{i}-x_{j}\right)}{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}

for i=1,2,3i=1,2,3, where {Γi}i=13\left\{\Gamma_{i}\right\}_{i=1}^{3} are positive constants. Show that these equations can be written in the form

Γidxi dt=Fyi,Γidyi dt=Fxi,i=1,2,3\Gamma_{i} \frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=\frac{\partial F}{\partial y_{i}}, \quad \Gamma_{i} \frac{\mathrm{d} y_{i}}{\mathrm{~d} t}=-\frac{\partial F}{\partial x_{i}}, \quad i=1,2,3

for an appropriate function FF. By introducing the coordinates

q=(x1,x2,x3),p=(Γ1y1,Γ2y2,Γ3y3),\mathbf{q}=\left(x_{1}, x_{2}, x_{3}\right), \quad \mathbf{p}=\left(\Gamma_{1} y_{1}, \Gamma_{2} y_{2}, \Gamma_{3} y_{3}\right),

show that the system can be written in Hamiltonian form

dqdt=Hp,dpdt=Hq\frac{\mathrm{d} \mathbf{q}}{\mathrm{d} t}=\frac{\partial H}{\partial \mathbf{p}}, \quad \frac{\mathrm{d} \mathbf{p}}{\mathrm{d} t}=-\frac{\partial H}{\partial \mathbf{q}}

for some Hamiltonian H=H(q,p)H=H(\mathbf{q}, \mathbf{p}) which you should determine.

Show that the three functions

A=i=13Γixi,B=i=13Γiyi,C=i=13Γi(xi2+yi2)A=\sum_{i=1}^{3} \Gamma_{i} x_{i}, \quad B=\sum_{i=1}^{3} \Gamma_{i} y_{i}, \quad C=\sum_{i=1}^{3} \Gamma_{i}\left(x_{i}^{2}+y_{i}^{2}\right)

are first integrals of the Hamiltonian system.

Making use of the fundamental Poisson brackets {qi,qj}={pi,pj}=0\left\{q_{i}, q_{j}\right\}=\left\{p_{i}, p_{j}\right\}=0 and {qi,pj}=δij\left\{q_{i}, p_{j}\right\}=\delta_{i j}, show that

{A,C}=2B,{B,C}=2A\{A, C\}=2 B, \quad\{B, C\}=-2 A

Hence show that the Hamiltonian system is integrable.