Paper 1, Section II, G
Let and be normed spaces. What is an isomorphism between and ? Show that a bounded linear map is an isomorphism if and only if is surjective and there is a constant such that for all . Show that if there is an isomorphism and is complete, then is complete.
Show that two normed spaces of the same finite dimension are isomorphic. [You may assume without proof that any two norms on a finite-dimensional space are equivalent.] Briefly explain why this implies that every finite-dimensional space is complete, and every closed and bounded subset of a finite-dimensional space is compact.
Let and be subspaces of a normed space with . Assume that is closed in and is finite-dimensional. Prove that is closed in . [Hint: First show that the function restricted to the unit sphere of F achieves its minimum.]