Paper 3, Section II, A

Applications of Quantum Mechanics
Part II, 2014

In the nearly-free electron model a particle of mass mm moves in one dimension in a periodic potential of the form V(x)=λU(x)V(x)=\lambda U(x), where λ1\lambda \ll 1 is a dimensionless coupling and U(x)U(x) has a Fourier series

U(x)=l=+Ulexp(2πialx)U(x)=\sum_{l=-\infty}^{+\infty} U_{l} \exp \left(\frac{2 \pi i}{a} l x\right)

with coefficients obeying Ul=UlU_{-l}=U_{l}^{*} for all ll.

Ignoring any degeneracies in the spectrum, the exact energy E(k)E(k) of a Bloch state with wavenumber kk can be expanded in powers of λ\lambda as

E(k)=E0(k)+λkUk+λ2kkkUkkUkE0(k)E0(k)+O(λ3)E(k)=E_{0}(k)+\lambda\langle k|U| k\rangle+\lambda^{2} \sum_{k^{\prime} \neq k} \frac{\left\langle k|U| k^{\prime}\right\rangle\left\langle k^{\prime}|U| k\right\rangle}{E_{0}(k)-E_{0}\left(k^{\prime}\right)}+O\left(\lambda^{3}\right)

where k|k\rangle is a normalised eigenstate of the free Hamiltonian H^0=p^2/2m\hat{H}_{0}=\hat{p}^{2} / 2 m with momentum p=kp=\hbar k and energy E0(k)=2k2/2mE_{0}(k)=\hbar^{2} k^{2} / 2 m.

Working on a finite interval of length L=NaL=N a, where NN is a positive integer, we impose periodic boundary conditions on the wavefunction:

ψ(x+Na)=ψ(x)\psi(x+N a)=\psi(x)

What are the allowed values of the wavenumbers kk and kk^{\prime} which appear in (1)? For these values evaluate the matrix element kUk\left\langle k|U| k^{\prime}\right\rangle.

For what values of kk and kk^{\prime} does (1) cease to be a good approximation? Explain your answer. Quoting any results you need from degenerate perturbation theory, calculate to O(λ)O(\lambda) the location and width of the gaps between allowed energy bands for the periodic potential V(x)V(x), in terms of the Fourier coefficients UlU_{l}.

Hence work out the allowed energy bands for the following potentials:

 (i) V(x)=2λcos(2πxa), (ii) V(x)=λan=+δ(xna).\begin{aligned} &\text { (i) } \quad V(x)=2 \lambda \cos \left(\frac{2 \pi x}{a}\right), \\ &\text { (ii) } \quad V(x)=\lambda a \sum_{n=-\infty}^{+\infty} \delta(x-n a) . \end{aligned}