Paper 1, Section II, A
Define the Rayleigh-Ritz quotient for a normalisable state of a quantum system with Hamiltonian . Given that the spectrum of is discrete and that there is a unique ground state of energy , show that and that equality holds if and only if is the ground state.
A simple harmonic oscillator (SHO) is a particle of mass moving in one dimension subject to the potential
Estimate the ground state energy of the SHO by using the ground state wavefunction for a particle in an infinite potential well of width , centred on the origin (the potential is for and for . Take as the variational parameter.
Perform a similar estimate for the energy of the first excited state of the SHO by using the first excited state of the infinite potential well as a trial wavefunction.
Is the estimate for necessarily an upper bound? Justify your answer.
You may use : and