Paper 3, Section II, E

Partial Differential Equations
Part II, 2015

(a) Show that if fS(Rn)f \in \mathcal{S}\left(\mathbb{R}^{n}\right) is a Schwartz function and uu is a tempered distribution which solves

Δu+m2u=f-\Delta u+m^{2} u=f

for some constant m0m \neq 0, then there exists a number C>0C>0 which depends only on mm, such that uHs+2CfHs\|u\|_{H^{s+2}} \leqslant C\|f\|_{H^{s}} for any s0s \geqslant 0. Explain briefly why this inequality remains valid if ff is only assumed to be in Hs(Rn)H^{s}\left(\mathbb{R}^{n}\right).

Show that if ϵ>0\epsilon>0 is given then vH12ϵvH22+14ϵvH02\|v\|_{H^{1}}^{2} \leqslant \epsilon\|v\|_{H^{2}}^{2}+\frac{1}{4 \epsilon}\|v\|_{H^{0}}^{2} for any vH2(Rn)v \in H^{2}\left(\mathbb{R}^{n}\right).

[Hint: The inequality aϵa2+14ϵa \leqslant \epsilon a^{2}+\frac{1}{4 \epsilon} holds for any positive ϵ\epsilon and aR.a \in \mathbb{R} . ]

Prove that if uu is a smooth bounded function which solves

Δu+m2u=u3+αu-\Delta u+m^{2} u=u^{3}+\alpha \cdot \nabla u

for some constant vector αRn\alpha \in \mathbb{R}^{n} and constant m0m \neq 0, then there exists a number C>0C^{\prime}>0 such that uH2C\|u\|_{H^{2}} \leqslant C^{\prime} and CC^{\prime} depends only on m,α,uL,uL2m, \alpha,\|u\|_{L^{\infty}},\|u\|_{L^{2}}.

[You may use the fact that, for non-negative ss, the Sobolev space of functions

Hs(Rn)={fL2(Rn):fHs2=Rn(1+ξ2)sf^(ξ)2dξ<}.]\left.H^{s}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right):\|f\|_{H^{s}}^{2}=\int_{\mathbb{R}^{n}}\left(1+\|\xi\|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi<\infty\right\} .\right]

(b) Let u(x,t)u(x, t) be a smooth real-valued function, which is 2π2 \pi-periodic in xx and satisfies the equation

ut=u2uxx+u3u_{t}=u^{2} u_{x x}+u^{3}

Give a complete proof that if u(x,0)>0u(x, 0)>0 for all xx then u(x,t)>0u(x, t)>0 for all xx and t>0t>0.